A Common Pathway for Charge Transport through Voltage-Sensing Domains

نویسندگان

  • Baron Chanda
  • Francisco Bezanilla
چکیده

Voltage-gated ion channels derive their voltage sensitivity from the movement of specific charged residues in response to a change in transmembrane potential. Several studies on mechanisms of voltage sensing in ion channels support the idea that these gating charges move through a well-defined permeation pathway. This gating pathway in a voltage-gated ion channel can also be mutated to transport free cations, including protons. The recent discovery of proton channels with sequence homology to the voltage-sensing domains suggests that evolution has perhaps exploited the same gating pathway to generate a bona fide voltage-dependent proton transporter. Here we will discuss implications of these findings on the mechanisms underlying charge (and ion) transport by voltage-sensing domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Field Dependent Charge Carrier Transport for Organic Semiconductors at the Time of Flight Configuration

In this paper, we used the time-of-flight (TOF) of a charge packet, that injected by a voltage pulse to calculate the drift velocity and mobility of holes in organic semiconducting polymers. The technique consists in applying a voltage to the anode and calculating the time delay in the appearance of the injected carriers at the other contact. The method is a simple way to determine the charge t...

متن کامل

Bistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit

We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...

متن کامل

Continuous Control of Charge Transport in Bi - Defi cient BiFeO 3 Films Through Local Ferroelectric Switching

It is demonstrated that electric transport in Bi-defi cient Bi 1− δ FeO 3 ferroelectric thin fi lms, which act as a p-type semiconductor, can be continuously and reversibly controlled by manipulating ferroelectric domains. Ferroelectric domain confi guration is modifi ed by applying a weak voltage stress to Pt/ Bi 1− δ FeO 3 /SrRuO 3 thin-fi lm capacitors. This results in diode behavior in macr...

متن کامل

Molecular Models of Voltage Sensing

Voltage-gated ion channels have always been overachievers. They have the singular distinction of having solved the permeation problem five times over. Not only do they have a central, highly selective pore through which they conduct charged ions, they also have four peripheral “pores” or gating canals through which they conduct the charged portions of their voltage sensors. This trick of protei...

متن کامل

Mechanisms Responsible for ω-Pore Currents in Cav Calcium Channel Voltage-Sensing Domains

Mutations of positively charged amino acids in the S4 transmembrane segment of a voltage-gated ion channel form ion-conducting pathways through the voltage-sensing domain, named ω-current. Here, we used structure modeling and MD simulations to predict pathogenic ω-currents in CaV1.1 and CaV1.3 Ca2+ channels bearing several S4 charge mutations. Our modeling predicts that mutations of CaV1.1-R1 (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2008